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Abstract
Fractal magnetoconductance fluctuations are often observed in experiments on
ballistic quantum dots. Although the analysis of the exact self-affine fractal
has been given by the semiclassical theory using self-similar periodic orbits
in systems with a soft-walled potential with a saddle, there has been no
corresponding quantum mechanical investigation. We numerically calculate
the quantum conductance with use of the recursive Green’s function method
applied to open cavities characterized by a Henon–Heiles type potential.
The conductance fluctuations show exact self-affinity just as in some of the
experimental observations. The enlargement factor for the horizontal axis can
be explained by the scaling factor of the area of self-similar periodic orbits, and
therefore be attributed to the curvature of the saddle in the cavity potential. The
fractal dimension obtained through the box counting method agrees with those
evaluated with use of the Hurst exponent, and coincides with the semiclassical
prediction. We further investigate the variation of the fractal dimension by
changing the control parameters between the classical and quantum domains.

(Some figures in this article are in colour only in the electronic version)

The recent progress in semiconductor nano-technologies has made it possible to experimentally
verify the quantum signature of chaos. Here, the electron mean free path is much longer
than the system size with Fermi wavelength less than the characteristic length of devices,
and thus the electron transport works in the ballistic and semiclassical domains. The
fractal magnetoconductance fluctuation is one of the typical phenomena observed in these
experiments. Taylor et al fabricated the Sinai billiard at the interface of semiconductor hetero-
junctions, and measured the conductance in the weak magnetic field range. The conductance
fluctuations showed the exact self-affine fractal in the vicinity of zero magnetic field [1]. In

0953-8984/07/092002+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/9/092002
mailto:nakamura@a-phys.eng.osaka-cu.ac.jp
http://stacks.iop.org/JPhysCM/19/092002


J. Phys.: Condens. Matter 19 (2007) 092002 Fast Track Communication

his pioneering work, Ketzmerick suggested that conductance fluctuations were a fingerprint
of the hierarchical mixed-phase-space structure in the underlying classical dynamics [2, 3].
According to this theory, the fractal dimension (Df) of the statistical fractal-like conductance
fluctuations is given by Df = 2 − γ

2 , where γ is the power of the dwelling time probability,
which is assumed to be the same as the distribution of areas enclosed by classical electron
trajectories from the entrance to the exit. Since classical dynamics tells us 1 < γ < 2, Df

should take the value 1.0 < Df < 1.5. However, most experiments at low temperatures
can show Df larger than 1.5 [4–7]. The experimental results also showed that Df reaches the
maximum in the semiclassical domain, and drops to unity when the system falls in the classical
or the quantum domains [5–7]. However, no quantum mechanical investigation has given a
satisfactory description of these results.

One way to resolve the above discrepancy and problem is to have recourse to a picture of
the self-similar periodic orbits which incorporates contributions of periodic orbits emanating
from a saddle of general quantum cavities. In fact, saddles are widely created inside
the cavity as a consequence of soft-wall confinement and at the point contact between
the attached leads and the cavity. Two of the present authors (Budiyono and Nakamura)
applied the semiclassical Kubo formula [8–10] to the system characterized by a Henon–Heiles
type potential which generates self-similar classical periodic orbits through a sequence of
isochronous pitchfork bifurcations [11, 12] and indicated that fluctuations can show the exact
self-affine fractal [13, 14]. In this type of potential, the harmonic saddles with transverse
curvature ω2

⊥ are related to the scaling factor of the successive self-similar periodic orbits.
The fractal magnetoconductance fluctuations were shown to have the power spectra of a
Weierstrass-like function. It was shown that Df can take values larger than 1.5, which violates
the results predicted by Ketzmerick, but certainly explains much wider experimental results for
the quantum dots accompanied by a potential with saddles. However, the quantum mechanical
verification of this semiclassical theory has not been performed so far.

In this letter, we show the quantum mechanical conductance by numerically solving the
recursive Green’s function applied to the quantum cavity with confining potential of Henon–
Heiles type, and confirm the validity of the picture based on self-similar periodic orbits. The
conductance fluctuations show the exact self-affinity in accordance with the classical scaling
law. We also find that Df can take values Df > 1.5, confirming the semiclassical issue
of [13, 14]. The variation of Df is also studied against both the finite temperature and the
ratio of the system size over Fermi wavelength.

First, we will briefly sketch the work of [13, 14] on the fractal conductance fluctuations.
In this theory, the Henon–Heiles potential is chosen to describe a typical cavity having saddles.
The scaled potential is written as a function of position coordinate as

VHH(x, y) = 6ε2[ 1
2 (x2 + y2) + ε(x2y − 1

3 y3)]. (1)

VHH(x, y) has a saddle at (xs, ys) = (0, 1
ε
) with its energy being unity and other equivalent

ones at (xs, ys) = (±
√

3
ε

,− 1
2ε

). The transverse curvature of the saddle is given by

ω2
⊥ = ∂2VHH(x, y)

∂x2

∣
∣
∣
∣
(xs ,ys)

. (2)

The properties of classical dynamics under this potential are well known [11, 12]. Let us focus
on the linear mother orbit A which librates between the wall and the saddle (see figure 1). As
the energy increases enough towards the saddle energy, the librating orbit A generates satellites
of self-similar figure-of-eight periodic orbits with non-vanishing area through a cascade of the
successive pitchfork bifurcations, which play an important role in conductance fluctuations.
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Figure 1. Left panel: Henon–Heiles potential with equi-potential lines and three shortest periodic
orbits A, B, and C. O stands for the origin (x, y) = (0, 0). Right panel: self-similar periodic orbits
with non-vanishing area generated through orbit bifurcations from orbit A. λ denotes a scaling factor
in the text. See [12].

The orbits B and C show no bifurcation and have nothing to do with the fractal. The areas
enclosed by the self-similar periodic orbits obey the approximate scaling relation,

�(n)
po = λ�(n−1)

po , 0 < λ < 1. (3)

Here �(n)
po denotes the area enclosed by a periodic orbit born at the nth bifurcation. The scaling

factor λ is related to the curvature at the saddle as follows:

λ = exp

(

− π

ω⊥

)

. (4)

The factor shows up in the exact self-affine conductance fluctuations, which was demonstrated
in [13, 14]. In the presence of a weak magnetic field B , one can assume the shape of periodic
orbits to be unchanged. Then the action Spo evaluated at the Fermi energy EF can be expanded
up to the first order in B as follows:

Spo(E, B) = Spo(E, 0) + e

c
�po B. (5)

The oscillating part of the conductivity can be written in terms of the self-similar periodic orbits
in equation (3) [10]:

δGxx (E, B) =
∑

po

Rpo(τβ)Fpo(τs)Apo cos

(
Spo(E, 0)

h̄
− μpo

2
π

)

cos

(
e

ch̄
�po B

)

. (6)

μpo and Apo are the Maslov index and the amplitude factor of each periodic orbit, respectively.
The temperature T selects only a few shortest periodic orbits that contribute to equation (6)
through a damping factor Rpo(τβ) = (Tpo/τβ)/ sinh(Tpo/τβ) with Tpo the period of periodic
orbits and τβ = h̄

πkT the thermal cut-off. Damping due to a finite mean free path is given by
the Born factor Fpo(τs) = exp(−Tpo/2τs), where τs is the scattering time. It can be shown that
the oscillating part of the conductivity approximately satisfies the following self-affine scaling
relationship:

δGxx (λ
−2 B) ∼ λ−2H (λ,T )δGxx (B). (7)

This means that the conductivity fluctuations can be rescaled by simultaneously changing the
scale of the B-axis (horizontal axis) by λB = λ−2 and the scale of the conductivity (vertical
axis) by λG = λ−2H . H ≡ ln λG/ln λB is called the Hurst exponent. Using the scaling property

3



J. Phys.: Condens. Matter 19 (2007) 092002 Fast Track Communication

Figure 2. Left panel: the modified Henon–Heiles model and a figure-of-eight periodic orbit. Right
panel: a harmonic saddle with curvature ω2⊥.

encoded in the Hurst exponent, the fractal dimension of the conductivity fluctuations can then
be calculated as Df = 2 − H with 1 < Df < 2 corresponding to 0 < H < 1 [13, 14].

Our aim is to recover the above exact self-affinity in the quantum mechanical domain.
To calculate the conductance for quantum cavities, the recursive Green’s function method is
employed [15]. To see the self-similar periodic orbits clearly, there is a need to enlarge the
scaling factor λ. Therefore, we change the coordinate x into cx , with 0 < c < 1, to fatten the
area of periodic orbits. Accordingly, we employ the following modified model:

V (x, y) = 6ε2(1 − s)EF[ 1
2 (c

2x2 + y2) + ε(c2x2y − 1
3 y3)] (8)

with ES = (1− s)EF the saddle energy, EF the Fermi energy, and s a filling factor that controls
the saddle energy. As the boundary condition, we assume infinite hard walls located at y = yB+
and y = yB−, where yB+ = 1/ε represents the y coordinates of the saddle. If s(>0) comes
close to zero, ES is nearly equal to EF. Then the suppression of the probability density of the
wavefunction around the saddle makes it harder for the important periodic orbits to contribute
to the quantum transport. If s becomes too large, on the other hand, the effect of the hard-walled
boundary at y = yB+ becomes serious and smears out the role of the saddle. Considering the
above reasons, we choose s = 0.1 to set the case in which the most interesting phenomenon
is expected. Despite this modification, the properties of classical dynamics are essentially the
same as in the unscaled Henon–Heiles system. Two leads are characterized by the potential,
Ulead(y) = (�(ỹ − w

2 )+�(−w
2 − ỹ))Vc +�(ỹ + w

2 )�(−ỹ + w
2 )V (±L/2, y) with ỹ = y − y0

and Vc = 10EF, and attached to the right and left sides of the cavity so that the saddle on the
middle top is kept away from the leads as in figure 2.

The numerical calculation is performed with the 116 × 216 lattice and the ratio between
the lattice constant a and the Fermi wavelength a/λF = 0.197. We choose the ratio between
the characteristic length of the cavity and the Fermi wavelength to be L/λF = 22.83. The
mode number is n = 6. Then the electron can be considered to be in the semiclassical region.
The unitarity precision depends on the nature of evanescent modes included in our numerical
treatment. In the presence of field B , the precision (per mode) is stable regardless of the location
(y0) of leads, so long as y0 falls in the central third in the vertical width between yB− and yB+.
However, it becomes unstable when y0 is close to the upper or lower boundary of the cavity.
The latter difficulty is caused by the appearance of the anomalously large vertical evanescent
modes in such limiting cases. To keep the stable precision, we have chosen the value y0 in
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Figure 3. Left panel: numerical results for magnetoconductance fluctuations G(B) and a partial
magnification in the case of λ = 0.387 and ω⊥ = 3.31. Right panel: the successive magnification
of the coarse grained conductance fluctuations.

the above central region so as not to meet such anomalous evanescent modes. Figures 3 and 4
show the quantum mechanical conductance as a function of B . The results are obtained under
the unitarity precision 1 ± 0.002. At a very few exceptional B values, however, the precision
suddenly drops to the level 1 ± 0.02, which does not affect the global structure of curves in
figures 3 and 4.

In our model, with use of the effective mass m∗ of the electron, the transverse curvature of
the saddle is written as

∂2V (x, y)

∂x2

∣
∣
∣
∣
(xs ,ys)

= m∗ω2
⊥ = 18ε2(1 − s)EFc2. (9)

The left panel of figure 3 shows the self-affine-like structure around B = 0. To see the self-
affinity more clearly, we perform the coarse graining of the conductance fluctuations. The
result is given on the right panel of figure 3. (At the top of the figure, for example, the coarse
graining is done by averaging G(B) over each interval of �B = 5 mT, with successive intervals
chosen by shifting the preceding one by δB = 0.125 mT.) The magnification factors in the
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Figure 4. Left panel: quantum mechanical magnetoconductance G(B) in the case of λ = 0.309
and ω⊥ = 2.67 (thin line). The magnification of the range at −13 mT � B � 13 mT is given by
the bold line. Right panel: a partial magnification of the coarse grained conductance fluctuations.

horizontal and vertical directions are respectively λx = 6.68 and λy = 1.8 (both evaluated
from the left panel). The value λx turns out to be equal to λ−2 = exp( 2π

ω⊥ ) = (0.387)−2

with ω⊥ = 3.31 employed in equation (9). Then the fractal dimension is calculated as
Df = 2 − H = 2 − ln λy

ln λx
= 1.69, which is consistent with that of the semiclassical

theory [13, 14]. For comparison, another analysis of Df based on the box counting method
is performed, giving Df = 1.64. (The power law behaviour can be observed for boxes on
scales from (δB, δG) = (1.1, 0.004) through (16.2, 0.054) in the left panel of figure 3.) This
is almost the same value as calculated in terms of the Hurst exponent.

Next, we calculate the magnetoconductance when λ = 0.309 with a different value of
ω⊥ = 2.67 (see figure 4). The self-affinity is shown in two ways as in the case of figure 3. In
the left panel of figure 4 the bold line is obtained by partially magnifying the original thin lines
by λx = λ−2 = 10.47 in the x axis and by λy = 2.0 in the y axis. In this choice of λx and
λy , major peaks and dips nicely coincide between the magnified and non-magnified structures.

Then, the fractal dimension Df is equal to 2 − ln λy

ln λx
= 1.70.

On the other hand, there are experimental studies on the effect of transition from classical
(large (scaled) size of the cavity L/λF and finite temperature kBT ) to quantum (small L/λF and
kBT = 0) limits on Df, and some experiments indicate 1.5 < Df < 1.6 [5–7]. We therefore
investigate the variation of Df against L/λF and kBT . The finite temperature effect on the
conductance is written as

〈G(B)〉 =
∫

dE

(

− ∂ f

∂ E

)

G(E, B), (10)

where f is the Fermi distribution function. Below, the curvature at the saddle is fixed so that
λ = 0.387 and the box counting method is used. The result is shown in table 1. Df takes a
maximum at the zero temperature under the largest L/λF, namely in the semiclassical domain,
and drops towards unity when the system falls in the classical and quantum domains.
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Figure 5. Left panel: the effect of finite temperature kBT on G(B) and Df under a fixed
L/λF = 22.83. Traces are vertically offset for clarity. From top to bottom: kBT/EF = 0.0591,
0.0197, 0.00197, 0. Right panel: the effect of L/λF on G(B) and Df under a fixed kBT/EF = 0.
From top to bottom: the L/λF = 22.83, 18.27, 9.13.

Table 1. Variation of fractal dimension.

kBT/EF L/λF Df

0.0591 22.83 1.36
0.0197 22.83 1.45
0.00197 22.83 1.55
0 22.83 1.64
0 18.27 1.58
0 9.13 1.37

To see this assertion more vividly, we show in figure 5 the T - and L/λF-dependence of the
spectra. In fact, the enhanced thermal effect (left panel) and the quantum effect (right panel)
rapidly suppress the fractal structure. These behaviours are consistent with the experimental
results [5–7]. Precisely speaking, the value of Df becomes difficult to evaluate for high
temperatures, since the integration range in equation (10), |E−EF| � kBT , becomes broadened
as T is increased. While G(B) and Df at kBT/EF � 0.02 in table 1 and figure 5 are converged
values, those at kBT/EF = 0.0591 are not fully converged because the number of the calculated
data is still limited. However, the averaging over a sufficiently large number of E-dependent
data will smooth out conductance fluctuations, and one can expect a further reduction of Df in
its converged value for kBT/EF = 0.0591.

In conclusion, by using the numerical quantum mechanical calculation, we have obtained
fractal conductance fluctuations in a Henon–Heiles type cavity with attached leads. This
potential has harmonic saddles as widely seen in general soft-walled quantum dots, and
generates self-similar classical periodic orbits at the saddle through a sequence of pitchfork
bifurcations. Our assertion is that fractal conductance fluctuations are caused by this self-
similarity of the periodic orbits. Furthermore, the fractal dimension can be larger than 1.5 and
coincides with experimental observations. In the present system, although unstable self-similar
periodic orbits exist at EF > ES, the phase space structure can show almost global chaos
without island structures. This indicates that the experimental observations of the exact self-
affine conductance fluctuations are not the fingerprints of the mixed-phase-space structure, but
a general consequence of soft-walled quantum dots with saddles. The reason why other groups
failed in obtaining quantum mechanical conductance fluctuations with the fractal dimension
larger than 1.5 is that their numerical works were concerned with the confining potential with
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no saddle [16–18]. The fractal dimension has a maximum in the semiclassical domain, and
drops towards unity when the system falls either in the classical or quantum domains. This
behaviour also agrees with the experimental results [5–7]. Although we concentrated on a
saddle inside the cavity, those saddles at the point contact between the attached leads and the
cavity are found to show the same results as given here, which will be described elsewhere.

The authors are grateful to M Fromhold, H Linke, and Y Ochiai for very useful comments.

References

[1] Taylor R P et al 1997 Phys. Rev. Lett. 78 1952
[2] Ketzmerick R 1996 Phys. Rev. B 54 10841
[3] Huckestein B et al 2000 Phys. Rev. Lett. 84 5504
[4] Micolich A P et al 2000 Europhys. Lett. 49 417
[5] Micolich A P et al 2001 Phys. Rev. Lett. 87 036802
[6] Micolich A P et al 2004 Phys. Rev. B 70 085302
[7] Bird J P 2003 Electron Transport in Quantum Dots (Dordrecht: Kluwer–Academic)
[8] Hackenbroich G and von Oppen F 1995 Z. Phys. B 97 157
[9] Richter K, Ullmo D and Jalabert A 1996 Phys. Rep. 276 1

[10] Nakamura K and Harayama T 2004 Quantum Chaos and Quantum Dots (Oxford: Oxford University Press)
[11] Lichtenberg A J and Lieberman M A 1992 Regular and Chaotic Dynamics (Berlin: Springer)
[12] Brack M 2001 Foundation of Physics 31 209
[13] Budiyono A and Nakamura K 2003 Chaos Solitons Fractals 17 89
[14] Budiyono A and Nakamura K 2003 Phys. Rev. B 68 121304
[15] Ando T 1991 Phys. Rev. Lett. 44 8017
[16] Takagaki Y and Ploog K H 2000 Phys. Rev. B 61 4457
[17] Tench C R et al 2000 Physica E 7 726
[18] Weingartner B, Rotter S and Burgdörter J 2005 Phys. Rev. B 72 115342

8

http://dx.doi.org/10.1103/PhysRevLett.78.1952
http://dx.doi.org/10.1103/PhysRevB.54.10841
http://dx.doi.org/10.1103/PhysRevLett.84.5504
http://dx.doi.org/10.1209/epl/i2000-00165-4
http://dx.doi.org/10.1103/PhysRevLett.87.036802
http://dx.doi.org/10.1103/PhysRevB.70.085302
http://dx.doi.org/10.1007/BF01307466
http://dx.doi.org/10.1016/0370-1573(96)00010-5
http://dx.doi.org/10.1023/A:1017582218587
http://dx.doi.org/10.1016/S0960-0779(02)00324-7
http://dx.doi.org/10.1103/PhysRevB.68.121304
http://dx.doi.org/10.1103/PhysRevB.61.4457
http://dx.doi.org/10.1016/S1386-9477(00)00046-1
http://dx.doi.org/10.1103/PhysRevB.72.115342

	References

